Version 1.0

General Certificate of Education (A-level) January 2012

Mathematics

MD01

(Specification 6360)

Decision 1

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

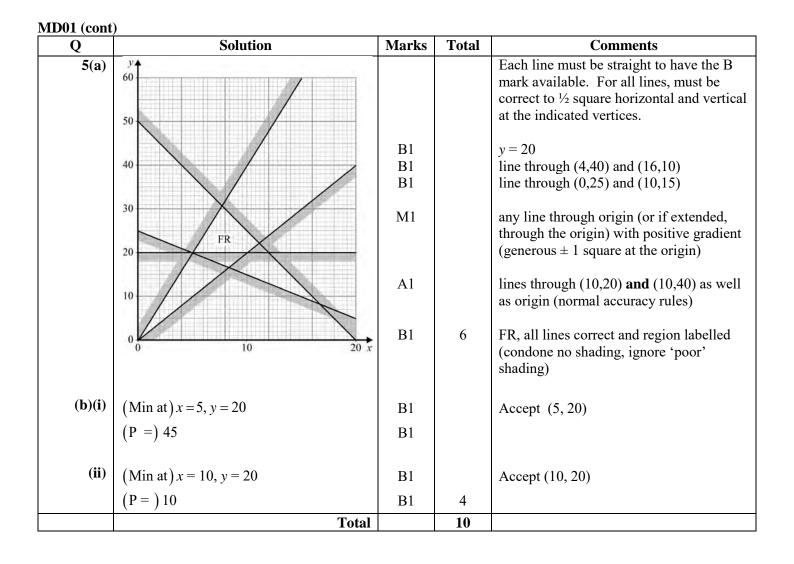
М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
с	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.


Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q				Solu	ition				Marks	Total	Comments
1	37	25 ~	16 ×	12 •	36 _	24 ~	13 ×	11 •			
	36	24	13	11	37	25	16	12	M1		Using 4 sets of 2
	36	24 ×	13	11 ×	37 _	25 ×	16 _	12 ×	A1		Must see this line
	13	11	16	12	36	24	37	25	ml		Using 2 sets of 4
	13	11	16	12	36	24	37	25	A1		Must see this line
	11	12	13	16	24	25	36	37	A1	5	All correct
								Total		5	
2(a)	$ \begin{array}{c} $							-•4	M1 A1	2	Bipartite graph, 2 sets of 6 vertices, at least 10 edges Correct, including labels
(b)	F $\therefore E$ $\therefore B$ $\therefore A \&$ Impose alloca	must must & C b ssible	t be w ooth w e as tv	vith 5 vith 2 vith 1 wo pe) cople (canno	ot be		E1 E1 E1	3	Include conclusion Or E1 3 must be with D (generous) E1 4 " " D (generous) E1 Impossible as D cannot do both 3 and 4 (strict)

MD01 (cont)

Q	Solution	Marks	Total	Comments
3 (a)	$ED = \begin{pmatrix} 6 \end{pmatrix}$	M1		Kruskal, must have first 2 edges correct &
	AC = 8			no cycles
	$AD = \begin{bmatrix} 10 \end{bmatrix}$			(edges not lengths must be seen)
	or	A1		AD or CD third edge
	$DC = \begin{bmatrix} 10 \end{bmatrix}$			
	$FG = \begin{bmatrix} 11 \end{bmatrix}$			
	BE = 12	A1		<i>BE</i> 5th edge
	$\frac{BE}{CF} = \begin{pmatrix} 12\\ 16 \end{pmatrix}$	B1		6 edges
	CF = (10)	Al	5	All correct
		D1		
(b)	63	B1	1	
(c)	B •≁E			
	/-	M1		Spanning tree with 5+ edges
				spanning acc with 5 r edges
		A1		Correct including labelling
	C F			
	B E			
	A. D 19			
		A1	3	Correct including labelling on a separate
				diagram
	C			
1 (a)	Total		9	
4(a)	CE + KH = (35 + 24) = 59	M1		These 3 correct sets of pairs
	CK + EH = (25 + 40) = 65	A2,1		3 correct totals, 2 correct totals
	CH + EK = (25 + 30) = 55			
	Total $= 224 + 55$ PI by their '279'	M1		224 + their smallest of three pair totals
	270	A1	5	CSO including totals seen
	= 279		•	C
(b)	3	B1	1	

MD01 (cont)

(b) Route: $A \ B \ E \ F \ G \ H \ I \ J$ B1 1 Or reverse reversed and final values $I = I + I + I + I + I + I + I + I + I + $	Q	Solution	Marks	Total	Comments
$\begin{bmatrix} 28 & B & 0 & 39 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & $	6(a)				
A1Correct values at D 55 66 56 ml ml 4 values at F 55 66 56 ml ml 4 values at F 2 values at G or H 2 values at I 2 values at I 80 66 56 66 66 56 794 gg gg gg [9] Al Al 80 66 794 gg gg gg [9] Al 80 794 gg gg gg [9] Al 1122 122 122 112 1122 122 112 1122 122 112 1122 122 112 1122 122 112 1122 122 112 1122 122 112 1122 122 112 1122 122 112 1122 122 112 1122 122 112 1122 122 112 1122 122 112 1122 122 112 1122 122 112 1122 122 112 1122 122 112 1122 122 112 1122 122 112 1122 122 </th <td></td> <td>28 39 48 C₁₀₇ [17]</td> <td>M1</td> <td></td> <td>SCA, 2 values at <i>C</i> or <i>D</i></td>		28 39 48 C ₁₀₇ [17]	M1		SCA, 2 values at <i>C</i> or <i>D</i>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		9 10	A1		Correct values at D
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		D ³⁹ 37	m1		4 values at F
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		55 45	m1		2 values at G or H
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		56	m1		2 values at I
SolutionAlAll correct, condone 0 missing at A, with rejected values crossed and final values boxed and no extra values at other vertices.(b)Route: A B E F G H I JB17145 at J(c)'their 135' - (28 + GJ) GJ may be in terms of letters or numbersM1Or replace their BG in terms of letters or numbers eg 55 + 8 + 10 = 73,		E 8			Each m1 depends only on the M1
(b) Route: $A \ B \ E \ F \ G \ H \ I \ J$ (c) 'their 135' - (28 + GJ) GJ may be in terms of letters or numbers M1 M		54 10 10 10 10 10 10 11 11 11 122 121	A1		boxed and no extra values at other
(c) 'their 135' – $(28 + GJ)$ M1 GJ may be in terms of letters or numbers M1 or replace their BG in terms of letters or numbers eg 55 + 8 + 10 = 73,		10 <i>J</i> 149 145	B1	7	145 at J
GJ may be in terms of letters or numbers numbers J numbers eg 55 + 8 + 10 = 73,	(b)	Route: A B E F G H I J	B1	1	Or reverse
	(c)		M1		
or $BG = AG - 10 - 28$ eg BG = 'their 101' - 10 - 28					
= 63 A1 Note: 63 with no working seen scores 2		= 63	A1		Note: 63 with no working seen scores 2/2
Route: A B G H I JB13Or reverse		Route: A B G H I J	B1	3	Or reverse
Total 11		Total		11	

Q	Solution	Marks	Total	Comments
7(a)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1 B1	2	5 correct values in an <i>E</i> 'line' All correct
(b)(i)	BADEFGCB 80	M1 A1 A1 B1	4	Tour visiting at least 6 vertices Visits all 7 vertices Correct order from <i>B</i>
(ii)	<i>B A D E F G <u>E</u> C <u>A</u> B</i>	M1 A1	2	Expansion of <i>GC</i> or <i>CB</i> Both correct
(iii)	76	B1F	1	Minimum of 76 and their (b)(i)
(c)(i)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1		Use of matrix form, 4+ numbers circled and 4+ parallel 'lines' crossed out
	A 2 6 4 16 27	A1		C added 4th
	B (2) - 8 3 15 26	B1		Any 5 values 'circled'
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1		All correct values circled and lines crossed out, either as shown or as mirror image. Order of vertices must be clearly shown. Condone omission of line at G .
/••	42	ח1	4	For 42 soon on far $2 + 6 + 2 + 12 + 20$
(ii)	$ \begin{array}{r} 43 \\ 43 + (4 + 7) \\ = 54 \end{array} $	B1 M1 A1	3	For 43 seen, or for $2 + 6 + 3 + 12 + 20$ Their 43 + 2 different edges from <i>E</i> SC 54 with no working $2/3$
(iii)	64	B1	1	
(d)	$64_{t} \leq_{1} T \leq 76$	B1B1	2	Must be written in symbols
	Total		19	

Q	Solution	Marks	Total	Comments
8 (a)	2x + 3 > 0	M1		Any of these seen
	3x-5>0			
	x + 1 > 0			Candidates may use ≥ 1 instead of ≥ 0
	4x - 13 > 0			
	$x > \frac{13}{4} \text{ or } \ge \frac{14}{4}$		-	
	$x > \frac{1}{4}$ of $\geq \frac{1}{4}$	A1	2	Must see both lines. Ignore further work
	(Integer) so $x \ge 4$			on other inequalities. Accept 4.6 or 4.7 AWRT
				Accept 4.0 of 4.7 AWRI
(b)(i)	2x + 3 > 3x - 5	M1		Any correct ISW, condone use of \geq
	> <i>x</i> + 1	A1		2nd correct ISW
	>4x-13	A1	3	All correct ISW
			-	
(ii)	3x - 5 > x + 1	M1		Either correct ISW, condone use of \geq
	>4x-13	A1	2	Both correct ISW
(iii)	x + 1 > 4x - 13	B1	1	ISW
(c)	$\frac{13}{4} < x < \frac{14}{3}$	M1		Or $4 \le x < \frac{14}{3}$, condone $3 < x < \frac{14}{3}$
	4 3	1011		5 5
				(Ignore all other inequalities)
	<i>x</i> = 4	A1	2	Must have scored 9/9 earlier
				SC $x < \frac{14}{2}$: $x = 4 \frac{1}{2}$
	T-4-1		10	3
	Total		<u>10</u> 75	
	TOTAL		15	